Phantom-based performance evaluation: Application to brain segmentation from magnetic resonance images

نویسندگان

  • Bruno Moretti
  • Mohamed-Jalal Fadili
  • Su Ruan
  • Daniel Bloyet
  • Bernard Mazoyer
چکیده

This paper presents a new technique for assessing the accuracy of segmentation algorithms, applied to the performance evaluation of brain editing and brain tissue segmentation algorithms for magnetic resonance images. We propose performance evaluation criteria derived from the use of the realistic digital brain phantom Brainweb. This 'ground truth' allows us to build distance-based discrepancy features between the edited brain or the segmented brain tissues (such as cerebro-spinal fluid, grey matter and white matter) and the phantom model, taken as a reference. Furthermore, segmentation errors can be spatially determined, and ranged in terms of their distance to the reference. The brain editing method used is the combination of two segmentation techniques. The first is based on binary mathematical morphology and a region growing approach. It represents the initialization step, the results of which are then refined with the second method, using an active contour model. The brain tissue segmentation used is based on a Markov random field model. Segmentation results are shown on the phantom for each method, and on real magnetic resonance images for the editing step; performance is evaluated by the new distance-based technique and corroborates the effective refinement of the segmentation using active contours. The criteria described here can supersede biased visual inspection in order to compare, evaluate and validate any segmentation algorithm. Moreover, provided a 'ground truth' is given, we are able to determine quantitatively to what extent a segmentation algorithm is sensitive to internal parameters, noise, artefacts or distortions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Geometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes

Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2000